Scheduling Notation

We will give the typical notation used in the course

Jobs

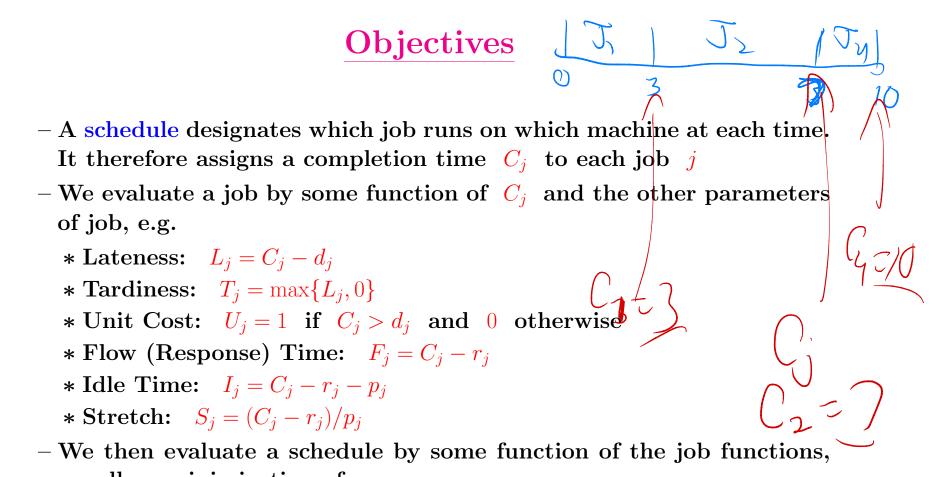
'alline

- Number: n
- Typical Index: *j*
- Features:
 - -processing time: p_j or p_{ij}
 - release date: r_j
 - deadline or due date: d_j
 - weight w_j

<u>Machines</u>

- Number: m
- Typical Index: *i*
- Possible Environments:
 - * 1 : one machine
 - * P,Pm: parallel (identical machines)
 - * Q,Qm: related machines (different speeds)
 - * **R**,**R**m: unrelated machines (processing time depends on job and machine)
 - * Shop Environments
 - \cdot J: job shop each job has linear constraints among its task
 - \cdot F: flow shop each job has the same linear constraints among its task
 - \cdot O: open shop no constraints among tasks

job = build a car consults of many tasks may nect


adding , bd th ithe s strike

Constraints

We give some examples here:

- $-r_j$: release date pmtn: preemption prec: precedence constraints
- $-s_{jk}$: sequence dependent set up times
- bkdwn: machines may breakdown
- block: limited buffer size

non-preemption, the default

usually a minimization of a

* sum

* weighted sum

* discounted weighted sum

* maximum (We use X_{max} as shorthand for $\max_j X_j$).

3 field notation

- \bullet machines constraints objective
- Default is no preemption Examples:
 - $-P||C_{\max}$ parallel identical machines, minimize the schedule length (makespan)

 $C_{max} = Max \left\{ \left\{ \cdot \right\} \right\}$

- $-1|\text{prec}, \text{pmtn}| \sum w_j C_j$ one machine, precedence constraints and preemption, minimize the sum of weighted completion times
- $-P\infty|\mathrm{prec}|C_{\mathrm{max}}|$ project scheduling

5

- -Jm|nowait| C_{max} nowait job shop scheduling, minimize makespan
- $1 |\text{pmtn}| \sum w_j T_j \,$ one machine, preemption, minimum weighted tardiness